d FORMOSE

PROJECT: FORMOSE

-

FORMAL REQUIREMENTS MODELING FOR CRITICAL
COMPLEX SYSTEMS, METHOD AND TOOLKIT

Formose Requirements Modeler (FORMOD)

Tool documentation version 1.0

INSTITUT MINES-TELECOM, OPENFLEXO

47 3 4 G

IMT Atlantique
Bretagne-Pays de la Loire
Ecole Mines-Télécom OpenHr‘xo

Authors: Development Team.:
Fahad R. Golra Sylvain Guerin
Fabien Dagnat Christophe Guychard

February 6, 2017

T I I A I E E AGENCE NATIONALE DE LA RECHERCHR

User Guide FROMOD V1.0

Contents

I_Overview] 4
[T Whatis FORMOD? v vt vvoee e 4
.2 Who can use FORMOD? 4
L3 Howdoesit work?l 4
L4 Ticensed v 4

12 Installation procedure| 5
2.1 Installation - Packaged distribution|. 5

13 Tool Layout| 7
3.1 Project Explorer Zone| 7
3.2 Document Loading Zone| 8
3.3 Requirements Explorer Zone|. 8
3.4 Document Summary Zone| 8
8.5 Drawing Zone|o oL 8
8.6 Palette Zonel 9
|3.7 Graphical Properties Zone| 9

4 FORMOSE Process 10

[Getting started by example| 12

6 _Behind the Curtain| 16

1 Overview

1.1 What is FORMOD?

Formose Requirements Modeler (FORMOD) is a requirements elicitation
and modeling tool. As a start, it allows gathering the requirements from
different software project artifacts like project proposals, feasibility re-
ports, standards, etc. It uses KAOS approach for the development of
goal models, corresponding to the identified high-level requirements. It
also helps in refining these requirements to a coarse grain level, where
they become unambiguous and verifiable.

FORMOD methodology aims to model software project requirements of
critical and complex systems in a formal way. It uses model federation at
its core, which helps in creating and maintaining dynamic links between
several models of different paradigms e.g. requirements specification (tex-
tual), goal models, project artifacts, system design, etc.

1.2 Who can use FORMOD?

1.3 How does it work?

1.4 Licenses

FORMOD as a requirements elicitation tool can be used by the require-
ments engineers to gather early requirements. Formose methodology,
working at the core of this tool, allows for refining the requirements.
This helps the requirements engineer in achieving requirements comple-
tion. Apart from requirements elicitation, this tool also allows to model
the requirements. Current version of FORMOD is using KAOS goal
modeling diagrams. This aspect of the tool can help system analysts to
analyze the domain models in relation to different modeling diagrams
offered by KAOS.

FORMOD tool is based on the FORMOSE requirements engineering
methodology. This methodology connects the artifacts/models of dif-
ferent paradigms used in the process, so as to keep them synchronized
all along the project development lifecycle. Synchronization of models is
exploited to develop traceability links that can be operationalized. Op-
erationalization of traceability links is ensured through the definition of
behavior for mappings between the model elements. These mappings
with behavior are defined using model federation approach. Once such
mappings are developed between different models used in the require-
ments engineering process, new instances of artifacts can be generated
and the old instances can be kept up to date.

FORMOD is a requirements elicitation and modeling tool, developed
under the research project, FORMOSE. It is distributed under FLOSS
licenses considered as "free" by the Free Software Foundatiorﬂ This
documents of the tool is distributed under GNU Free Documentation
Licensd?

Yhttp://www.fsf.org/licensing/licenses/
2http://www.gnu.org/licenses/fdl.html

User Guide FROMOD V1.0

http://www.fsf.org/licensing/licenses/
http://www.gnu.org/licenses/fdl.html

2 Installation procedure

FORMOD is available for install on Linux, Windows and Mac OS sys-
tems. Two mechanisms are offered to install the software on these ma-
chines: 1) as a packaged application and 2) as an eclipse project. This
software is distributed under Free Licenses, so only the first mechanism
is available for the general public.

The second mechanism of installation is only for the project partners
and development team members. In order to access the implementation
details, the project partners should contact Openflexo team partners.

2.1 Installation - Packaged distribution

1. Open any browser and access the download page for the packaged
version of FORMOD through the following url.

URL : https://downloads.openﬂezzzo.org/Formose/

2. The download page should list different versions of the software.
Click the link corresponding to the latest release.

3. The new page should again list different versions of the package.
Use the latest package version in the list.

4. The next page will give you the choice amongst three different plat-
forms: Linux, Max and Windows. Click on the appropriate plat-
form for access the corresponding package.

5. Click on the installation package to start its download.

6. Once the download is complete, you can double click on the image
file to mount ilﬂ It should open a window showing the contents of
the image 1.e. the software package, as shown in Figure [I]

[XON)} Openflexo-1.8.0SNAPSHOT

G
Formose byOpenflexo
1.8.0SNAPSHOT

Figure 1: Mounted image of installation package

7. Copy the application launcher to your desired location (Software in
Mac OS X are typically installed in /Applications)

3 Download url of FORMOD is subject to change, please refer to FORMOSE wiki for
further updates.

4 This step is considering Mac OS installation process. Corresponding actions need
to be taken for Linux and Windows Systems

User Guide FROMOD V1.0

"Formose byOpenflexo 1.8.0SNAPSHOT"
e 5 can't be opened because it is from an
P‘ unidentified developer.

Your security preferences allow installation of only

apps from the Mac App Store and identified
developers.

“Formose byOpenflexo 1.8.0SNAPSHOT" is on the
disk image “Formose byOpenflexo
1.8.0SNAPSHOT.dmg". Google Chrome downloaded
this disk image yesterday at 14:59 from
downloads.openflexo.org.

@

Figure 2: Warning - Unidentified Developer

8. Trying to open the application launcher directly might trigger a
warning, as shown in Figure [2 In this case, right click on the ap-
plication launcher and click Open. This will pop-up a new dialog
box, as shown in Figure[3] Click Open again to launch the applica-
tion.

“Formose byOpenflexo 1.8.0SNAPSHOT" is
e from an unidentified developer. Are you
p sure you want to open it?

Opening “Formose byOpenflexo 1.8.0SNAPSHOT" will
always allow it to run on this Mac.

“Formose byOpenflexo 1.8.0SNAPSHOT" is on the
disk image “Formose byOpenflexo
1.8.0SNAPSHOT.dmg". Google Chrome downloaded
this disk image yesterday at 14:59 from
downloads.openflexo.org.

6

Figure 3: Dialog box with possibility to launch

User Guide FROMOD V1.0

3 Tool Layout

FORMOD tool interface has different zones to deal with different parts
of the project. Once a new project is created, the tool loads the provided
document file into its own interface, as shown in Figure [

OpenFlexo 1.8 - - Screenshots -

ene
=@ B & Usceensvos te L
)

Figure 4: Tool layout - Loading new project

The left pane of the tool shows two packages under the project name:
the identified requirements and the goal diagram for the project. Double
clicking the identified requirements opens up the tool with further differ-
ent zones, as shown in Figure [f] These zones are explained one by one,
in the rest of this section.

3.1 Project Explorer Zone

This is the top left zone of the tool interface. It presents the structural
hierarchy of the project, currently opened by the tool. At the top of
this hierarchy is the name of the project. Under its name, we find two
items, if only one document file is loaded in the project. The first one
is the "identified requirements" view of the project. Opening this view
displays other zones of the interface that help in requirements elicitation.
The second item in the hierarchy is the goal diagram for the project.

Landing Gear - i inding Gear.prj

ece . =
SATY N (1) Landing Gear e
@Ik €8

UK
—
e Goal modelling diagram for Landing_Gear 3¢ | ldentified requirements 3% " ;'{;‘fj::w;g::m
 Landing.Gear 3 et et ragment | | ety requicement equirements
. Landing gear system Explorer
Project & gearsy p
Frédéric Boniol and Virginie Wiels zone
Explorer ¢
ONERA-Toulouse, 2 av. E. Belin, BP 4025, 31055 Toulouse France
Zone
firstname name} @onerafr
. +i=] X
Document Loading (Eorsorand
No sroke
Zone Linewidth © 1
bstract. This document presents the landing system of an aircraft. It describes the system and =
— — ides some of its requirements. We propose this case study as a benchmark for techniques and coor (N
dedicated to the verification of behavioral properties of systems. Dash style
v & LandingGearsystemRat.docx A Join miter
11 Landing gear system Join style <
¥ Frédéric nmm.mﬂ jinie W Capstyle | ™= Cap square
Doctiment: . =
o i ntr wGraphical
Summary _ _ _ ~riiperties
M Azﬁﬁwé\xumm pres . MThis document presents a landing system. It describes the system and provides some ‘ : J
T < of its requirements. We propose this case study as a benchmark for techniques and N zone
> § 1 imroduction : ropos ! Background
. ools dedicated to the verification of behavioral properties of systems. > Text
2. Architecture of the system > Shadow
3 3 seravor ofne érauic<a ! e landing system is in charge of maneuvering landing gears and associated doors. [fLositionsize
o — [] e

Figure 5: Mounted image of installation package

User Guide FROMOD V1.0 7

Opening this item displays the view of goal modeling. Goal modeling
view presents different zones for graphical modeling of the requirements.

3.2 Document Loading Zone

This is the middle zone of the tool interface. It loads the document that
the project is currently using for requirements elicitation. In case of a
word document, the contents of the documents are loaded into this zone.
These contents are selectable in order to mark a portion of text as re-
quirements or a fragment of interest. On the right top corner of this
zone, we find two buttons: Identify text fragment and Identify require-
ment. Identify text fragment button is used to select a fragment of text
that might contribute to building a requirement. Identify requirement
button is used to select a portion of text or already identified fragment
of text as a requirement.

3.3 Requirements Explorer Zone

The right top zone of the interface is the requirements explorer zone. Ev-
ery time a portion from the document is marked as an identified fragment,
it lists under the identified fragments item of this explorer. Likewise,
whenever a requirement is defined from the identified fragments or direc-
tion from the document, it lists itself under the identified requirements
item.

3.4 Document Summary Zone

3.5 Drawing Zone

This zone is located in the lower left side of the interface. It allows to get
an overview of the complete document. It also serves as a hyper-linked
table of contents for the document, that allows to easily access specific
portions of the document.

When the goal diagram item from the project explorer zone is opened, it
opens the goal modeling view for the project. In this view, the document
loading zone is replaced by the Drawing zone, as shown in Figure [6] The
drawing zone allows the development of goal models for the project. The
top left corner of the drawing zone offers some controls for aligning the
graphical objects placed in the drawing zone.

L] L] FormosePrototype : Goal modelling diagram for Landing_Gear - Landing Gear - Projects/L
& @ A & EF) tancing cear te

" :":,‘:i,c,,:;m,mmws ; Goal modelling diagram for Landing_Gear 3 Identified requirements >

1 tanion o O |20 (s
Project
Explorer
Zone
Drawing
Zone

v & LandingGearsystemRqt.docx
11 Landing gear system

i

Figure 6: Mounted image of installation package

User Guide FROMOD V1.0

3.6 Palette Zone

3.7 Graphical Properties

When in the goal modeling tab, the requirements explorer zone is replaced
by the palette zone. This zone has two different tabs: i) the goal diagram
palette and ii) the common palette. The goal diagram palette offers
the common concepts used for the development of goal models. These
graphical items can be dragged and dropped into the drawing zone for
the development of goal models. The common palette offers different
common shapes, which do not have any associated concepts in the goal
modeling diagrams. However they can be used to annotate, modify a
goal modeling diagram with additional graphical items.

Zone

This zone is located in the lower right part of the interface. It allows to
manipulate the graphical properties of the graphical items in the drawing
zone. This way, we can change the color, font, shadows, shapes, etc.

User Guide FROMOD V1.0

4 FORMOSE Process

FORMOD tool implements Formose methodology for the requirements
engineering. This methodology concerns the requirements elicitation
phase. The activities involved in the process are performed according to
the control flow described by Figure[7] All these activities are explained
as under.

Gather Federate Identify/

Map .
Specify

(6) Decompose

information information Elicit
resources resources Requirements

requirements to
project elements

Requirements

l

Define goals for Refine goals to

project elements equirements
. requirements
from requirements 4

project
elements

Figure 7: Formose Process

. Gather information resources: This activity involves the identifi-

cation of possible information resources that can be used to elicit
requirements. They can vary from early information resources like
feasibility reports, standards and minutes of the meetings to late
informations sources like deployment models, test plans, etc.

. Federate information resources: Once the information resources are

collected they need to be linked with the requirements. This is
handled through the model federation approach where requirement
models are developed as virtual models in the conceptual space and
other models (information resources) are placed in their respective
technological spaces.

. Identify/Flicit requirements: Once the information resources are

linked with the requirements model, we can identify the require-
ments from those information resources. For the moment, we have
used the technological space for MS Word documents to identify
multiple fragments for possible requirements. Different documents
are used for this purpose like project proposals, interview tran-
scripts, feasibility reports, etc.

. Specify requirements: Once the requirements are identified from

multiple information resources, they are specified in the require-
ments model. In case the requirements are already specified, they
are linked with the information resources for synchronization.

. Map requirements to project elements: In this activity, the spec-

ified requirements are mapped to the project elements. Multiple
requirements can be mapped to a single project element.

. Decompose project elements: Multiple requirements mapped to a

project element describe the expected functionality from that ele-
ment. This allows the decomposition of the element into sub el-

10

User Guide FROMOD V1.0

ements, such that each sub element takes care of a subset of the
requirements mapped to its parent element.

7. Define goals for project elements from requirements: All the require-
ments associated with a project element are considered as goals in
this activity. A goal model is developed for each of these goals.

8. Refine goals to requirements: All the goal models are refined to get
requirements at the leaves of the goal models. These requirements
can be specified in activity [4]

This is an iterative flow of activities where we see two sub-cycles in Fig-
ure [7} one corresponds to the decomposition of project elements (shown
with green arrows) and the other to the refinement of requirements
(shown with red arrows). A single activity, Map requirements to project
elements, serves as the entry point for both these cycles. These cycles are
often alternating, which describes that the system decomposition occurs
in parallel to the refinement of requirements.

User Guide FROMOD V1.0

11

5 Getting started by example

Let us see the FORMOD tool usage through a simple example. We
demonstrate the use of this tool using the Landing Gear Example.

1. Open the FORMOD tool by double clicking on its icon. This shall

open a startup screen which asks whether you need to develop a
new project or load an existing one. Choose a new project in this
screen.

In case you opened up the tool through Eclipse, make sure you
select the Formose view from the startup screen, as shown through
the red box in Figure

r
C Openflexo
I Diatomée infrastructure

Version 1.8 (build dev)

@ .z¢

FormosePrototype
< /

FormosePrototype description

Project Path
(i Landing Gear.prj /Users/Fahad /Documents /workspace /Openflexo Proj...
i Tutorial.prj /Users/Fahad /Documents/workspace /Openflexo Proj...
0 Tutorial.prj /Users/Fahad /Documents/workspace/Openflexo Proj...

+ - L

New project Open project Load module Exit

Figure 8: Startup Screen

. Enter the name and location of the project file and click save. This

name would be used to create a physical directory on the file system,
where all the files related to the project would be saved.

. After enter the project file name, a wizard will ask you for the

project name and requirements file. You can name you project as
you wish. Browse to the word document that you want to use for
the elicitation of requirements. We are using the Landing Gear
Example file. Once done, click Finish.

. Now you should have the main interface of the tool in front of you.

At the left side, you see the project explorer, where you will see
two items under your project file name: 1) identified requirements
item, and 2) your "project name" item. Double clicking the identi-
fiedRequirements element will open up further panels of the tool, as
shown in Figure[0] This is the Requirements elicitation view of the
tool. This will allow you to elicit requirements from the document
file that you provided when creating the project.

. In the requirements elicitation view, you can select portions of text

from the document body that might be interesting for the devel-
opment of a requirement. In our document, we select the fourth

12

User Guide FROMOD V1.0

ece FormosePrototype : dentified requirements - Tutorial -
<=0

I i Tutorial te (52
¥ @ Tutorial) —_— ~ 1 2 ¥ (D \dentified requirements

- [ment) Undlassified fragments
 TuoriaProject]

Landing gear system
Frédéric Boniol and Virginie Wiels
ONERA-Toulouse, 2 av. E. Belin, BP 4025, 31055 Toulouse France

fir: ¢ name} @onera.fr

©-1%|Abstract. This document presents the landing system of an aircraft. It describes the system and provides some of
¥ LandingGearSystemRqt.docx its requirements. We propose this case study as a benchmark for techniques and tools dedicated to the verification
71 Landing gear system lof behavioral properties of systems.
1 Frédéric Boniol and Virginie Wic
W1 ONERA-Toulouse, 2 av. . Belit
T (firstname.name)@onera.fr
T <newine> .
11 <newline> 1 Introduction
W Abstract. This document prese.
T <newlne> . . R
> § L inwoducton ‘This document presents a landing system. It describes the system and provides some of its
> § 2. Archtecture of the system | requirements. We propose this case study as a benchmark for techniques and tools dedicated to the
> § 3 Behavior of the hydraulc eauverification of behavioral properties of systems.
> § 4 Software speciication
> § 5. Requirements / Properties

The landing system is in charge of mancuvering landing gears and associated doors. The landing

- @ 4=

Hl

Figure 9: Requirements elicitation view

paragraph of the introduction section, which shows the landing and
retraction sequences. Once selected, we click the button marked 1 in
Figure[0] Now we choose to make this selected fragment a require-
ment, so we select the text of this fragment and click the button
marked 2 in Figure 0] This will open a dialog box for the creation
of a requirement, as shown in Figure Enter the name (landing
retracting sequence) and the description of the requirements and
click Finish.

eC e
Identify requirement l—-_ﬂ-. s
v

1/1 Configure requirement

requirement_name landing retracting sequence

Requirement description This requirement specifies the landing and retracting
sequence of the landing gear svslemf

<< Back Next >> Cancel Finish

Figure 10: Requirements dialog box

6. This lists the requirement landing retracting sequence in the Re-
quirements Explorer Zone. Now we shall add another portion of
text to the same requirement. To do this, make sure that you have
selected this requirement in the Requirements Explorer Zone. Now
we can navigate to section 2.1 of the document through the Doc-
ument Summary Zone and then select the first paragraph. Click
Identify requirement button. This shall list both the selected
fragments under the chosen requirement.

7. Keep selected other portions of text that might interest you to
identify requirements. And then identify some requirements from
those selected text fragments.

8. Once we have selected some coarse-grain requirements, its time to
refine those requirements to get some fine-grain requirements. We
shall model each of these high level requirements as goals in a goal

User Guide FROMOD V1.0 13

o o Drop the palette element
Create functional goal

name |anding retracting sequence
type

description

Validate Cancel

Figure 11: Functional Goal dialog box

modeling diagranm In order to switch to the goal modeling per-
spective, we need to open the goal modeling package in the Project
Ezxplorer Zone.

9. In order to refine the requirements, we take our requirement, land-
ing retracting sequence as a functional goal and refine it. From the
Palette Zone of the interface, we select the goal modeling tab. We
can drag and drop functional goals into the Drawing Zone to de-
velop goal models from this palette. So we drag and drop a function
goal into the drawing zone, which opens a dialog box for creating
functional goals, as shown in Figure [[I] Enter the name of the
requirement, landing retracting sequence and click Validat{l You
can resize the graphic to make it clear.

° FormosePrototype : Goal modelling diagram for 1 - Tutorial - JUsers/ 1 pri

23 Tutorial L B2

& dentified Goal for

NEE | N CEEHEER

&) (i)

landing sequence retracting sequence

» Foreground

¥ & LandingGearsystemRat docx » Background

1 Landing gear system
11 Frédéric Boniol and Virginie > Shadow

T ONERA-Toulouse, 2 av. E. B » Location/Size

T (firstname.name)@onera.fr > Layout Managers

1 Abstract. This document pre

T <newi
» § 1inreduction
» § 2. Architecture of the system
> § 3 Behavior of the hydraulic ¢
» § 4 sofware specification

= 5] Convoled dingramming - CTAL-4og 1o drow edges

Figure 12: Goal Model

10. You can drag and drop further goals to refine this requirement into
landing sequence and retracting sequence goals. These two goals
need to be linked to the initial requirement through the refinement
links and the AND connector. In order to do this, hover over the
child goal and grab the arrow sign and drag it to the parent goal.
This will create the connector and a link between the child goal and

5 For the moment, we are using KAOS goal models, but the future versions would be
incorporating SysMLKAOS modeling diagrams as well

61n the current version, we are jumping to the goal refinement directly. In future
versions, we shall link requirements to project elements as well. This step of linking
to project elements might come before goal modeling

7 Next version of the tool shall provide a list of requirements to attach to a functional
goal, e.g. from a drop down box and will populate other fields automatically

User Guide FROMOD V1.0

11.

the connector. Now hover over the connector and drag the shown
arrow to the parent goal. This will connect the child goal to the
parent goal with a refinement link. To add the second child goal,
hover over the child goal and drag the arrow to the connector. This
shall result in an AND refinement of the parent goal into two child
goals, as shown in Figure [12]

In case, two refinements of a goal are using OR connector, continue
to refine the first child goal first. For the second child goal, connect
it directly to the parent goal, instead of connecting to the connector.
This will create a new connector. Then connect that connector with
the parent goal.

User Guide FROMOD V1.0

15

6 Behind the Curtain

6.1 Model Federation

Requirements engineering serves as an interface between a system and
its environment. It focuses on gathering the information (domain mod-
els) from the environment by collecting the requirements for the system
to be developed. So, the artifacts and processes of requirements engi-
neering are tightly related to both the system under development and its
environment. In the context of requirements engineering, sharing infor-
mation between these processes and artifacts is handled through different
activities, ranging from manual (e.g. feasibility study, requirements elici-
tation techniques, etc.) to semi-automatic (e.g. requirements validation,
requirements management, etc.). These artifacts and other information
resources used or produced by these activities often share cross-cutting
concerns. These cross-cutting concerns are captured through traceability
links between them, which allow to traverse from initial phase artifacts
to later ones (forward traceability) or from later phase artifacts to initial
ones (backward traceability). Our approach is to use model federation to
connect these artifacts and information resources.

Model federation is an approach that provides the means to integrate
multiple models conforming to different paradigms. Different techniques
like model merging, profiling or extension mechanisms provided by UML,
model weaving, or other model composition approaches allow integrating
models from the same paradigm to get a different views for each stake-
holder. However, it becomes difficult, when models are conforming to
different paradigms. Model federation allows the integration of hetero-
geneous models to develop new cross-concern viewpoints/models or to
synchronize the models used for designing a system. Contrary to other
techniques that transform, merge or compose the models in a common
paradigm, it keeps models in their respective paradigms to avoid redun-
dancies.

The implementation of model federation by Openflexo uses multiple mod-
eling spaces i.e. conceptual, technological and design space, as shown in
Figure [I3] The different modeling spaces of our approach serve together
for the development of a complex system. The conceptual space is where
new models or views are developed by federating the concepts from al-
ready existing models. These federated models are called wvirtual models.
As virtual models reuse the concepts from various models conforming
to different paradigms, the conceptual space is surrounded by multiple
technological spaces. Each of these technological spaces is a collection of
models adhering to a common paradigm which gives a common ground
for their interpretation. Usually, the technological models are already de-
veloped to serve some specific concerns. They might even belong to some
different system. Finally, a design space is a specific kind of technological
space that serves for diagrammatic representations of the virtual models,
using the same interaction mechanism.

Model federation is realized through virtual models to develop new con-
cepts. We have developed a generic modeling language to define virtual
models in the conceptual space. They are developed using features that
can either be specifically defined for virtual models or by reusing ele-
ments of models from any of the existing technological spaces. Each of
these features, serving as a building block for a virtual model, is called a
flexo concept. A virtual model is responsible for managing the lifecycle

16

User Guide FROMOD V1.0

Conceptual Space Technological Space

Diagram 1

Design

—
| Legend: <—> Dynamic link
' i Model

Model element
E (technological space)

Technological connector g Flexo concept (local)

Model slot Flexo concept (remote)
Figure 13: Mapping between concepts in modeling spaces

of all the flexo concepts that it contains. While virtual models follow
the formalisms defined by our methodology, technological models follow
their own paradigm depending on their specific technological space. A
virtual model can not access the elements of a technological model, unless
it can interpret the formalisms used in its technical space. This is done
using a connection between the technological space and the conceptual
space, realized as technological connectors. These connectors allow ac-
cess for reading, writing and synchronizing the information between the
virtual models and the technological models. Once developed, a virtual
model can be serialized back into a new or existing technological space
for further development.

A virtual model is composed of flexo concepts. Some of these flexo con-
cepts are defined specifically for the development of a virtual model, we
call them local flexo concepts. Virtual models can also use certain ele-
ments from connected technological models. One way is to create a dy-
namic link between these local flexo concepts and the modeling elements
of technological models. Virtual model A shown in Figure [13] uses two
dynamic links; one to the model in technological space A and the
other to the one in technological space B. The second way of using
model elements from technological spaces is to translate them into flexo
concepts. A remote flexo concept of a virtual model is a translated mod-
eling element from a linked technological space, serving as a 'local proxy’.
Virtual model B shown in Figure contains a remote flexo concept,
which is a local 'proxy’ of a model element from technological space
B. In both these techniques, the link between the flexo concept and the
technological model is bi-directional and is maintained to synchronize any
changes. A virtual model in the conceptual space can be updated when
a corresponding technological model evolves and conversely, a technolog-
ical model can also be updated, once the corresponding virtual model is

User Guide FROMOD V1.0

17

modified. As the information is shared between multiple models, it might
be accessed and modified by multiple stakeholders at the same time. We
do not enforce any specific consistency model in this case, we rather give
this flexibility to the designers to implement any consistency model that
suits their specific application. We provide a notification system that
notifies the designer/stakeholder whenever a corresponding model is up-
dated. One can choose for automatic synchronization of models, but
then human intervention would be needed for resolving conflicts. Design
space is a specific technological space provided by our methodology for
diagrammatic representations of the virtual models. A technological con-
nector between conceptual space and design space allows linking the flexo
concepts to their graphic representations. These bi-directional links are
maintained, so a virtual model can be edited either from design space or
the conceptual space.

The technological connectors allow models in conceptual space to access
the models of technological spaces, however the actual dynamic link be-
tween these models is realized using model slots. Our approach of model
federation can be explained through the analogy of components based
design, where models serve as components, model slots as component
interfaces and technological connectors as connectors. Technological con-
nectors allow the creation of a dynamic link between a virtual model and
a technological model using model slots. A model slot defines an access
point both for a virtual model and a technological model to link them
together. It exposes a view on the structural and behavioral contents of
the technological model to the virtual model and vice-versa. Once linked
to a technological model, a virtual model can read/write to its attributes
using roles and execute the actions using edition actions. Roles and edi-
tionActions are to a flexo concept, what attributes and methods are to
a class, except that roles and editionActions are associated to attributes
and methods of a model adhering to an entirely different paradigm.

Taking the example of the requirements specification model for an em-
bedded system, as explained in the introduction section, we can connect
it to cost analysis spreadsheetﬁ to prioritize requirements according to a
cost-value approach. In order to realize a cost-value requirements priority
model, we need to develop it as a virtual model in the conceptual space.
The conceptual space needs to be connected to two technological spaces
i.e. MS Excel space for cost analysis spreadsheet and MS Word space
for requirements specification documentﬂ Both these technological con-
nectors are already available through our tooling support. Using these
connectors, we can develop our virtual model with two flexo concepts
i.e. Requirement and Priority. Requirement can be implemented as
a remote flexo concept, thus making a ’proxy’ for each requirements in
the virtual model that is dynamically linked to the requirements of the
specification document. Priority concept can directly be linked to the
cost analysis document to assign a priority value to each requirement.
Model slots for these links need to be developed by the modeler to con-
nect these concepts. Even though it is not a good idea to update cost
analysis document from this model, for the purpose of explanation we
assume that the designer has the possibility to update/modify the cost of
each requirement in the cost analysis document from the virtual model,
using the edition action setCellValue(). Furthermore, any other common

8 xlsx files are XML based spreadsheets. We consider all artifacts in software devel-
opment as models.

9 Different tools like IBM Rational RequisitePro, CaseComplete, Visure requirements
etc. share requirements based on MS Word format.

18

User Guide FROMOD V1.0

piece of information can be synchronized among cost-value requirements
priority model, requirements specification document and cost analysis
document. The cost-value requirements priority model can be developed
using a graphical editor of design space, hence editing/synchronizing the
flexo concepts in the virtual model.

User Guide FROMOD V1.0

19

	Overview
	What is FORMOD?
	Who can use FORMOD?
	How does it work?
	Licenses

	Installation procedure
	Installation - Packaged distribution

	Tool Layout
	Project Explorer Zone
	Document Loading Zone
	Requirements Explorer Zone
	Document Summary Zone
	Drawing Zone
	Palette Zone
	Graphical Properties Zone

	FORMOSE Process
	Getting started by example
	Behind the Curtain
	Model Federation

